翻訳と辞書
Words near each other
・ Mitterfeld
・ Mitterfels
・ Mitta Miraasu
・ Mitta Mitta
・ Mitta Mitta Airport
・ Mitta Mitta River
・ Mitta Mitta, New South Wales
・ Mitta Mitta, Victoria
・ Mitta United Football Club
・ Mittag
・ Mittag-Leffler distribution
・ Mittag-Leffler function
・ Mittag-Leffler Institute
・ Mittag-Leffler polynomials
・ Mittag-Leffler star
Mittag-Leffler summation
・ Mittag-Leffler's theorem
・ Mittag-Lefflerbreen
・ Mittagberg
・ Mittageisen
・ Mittageisen (band)
・ Mittaggüpfi
・ Mittaghorn
・ Mittaghorn (disambiguation)
・ Mittaghorn (Rawilpass)
・ Mittagong
・ Mittagong Formation
・ Mittagong Parish
・ Mittagong railway station
・ Mittagong Station


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mittag-Leffler summation : ウィキペディア英語版
Mittag-Leffler summation
In mathematics, Mittag-Leffler summation is any of several variations of the Borel summation method for summing possibly divergent formal power series, introduced by
==Definition==

Let
:y(z) = \sum_^\infty y_kz^k
be a formal power series in ''z''.
Define the transform \scriptstyle \mathcal_\alpha y of \scriptstyle y by
:\mathcal_\alpha y(t) \equiv \sum_^\infty \fract^k
Then the Mittag-Leffler sum of ''y'' is given by
:\lim_\mathcal_\alpha y( z)
if each sum converges and the limit exists.
A closely related summation method, also called Mittag-Leffler summation, is given as follows .
Suppose that the Borel transform converges to an analytic function near 0 that can be analytically continued along the positive real axis to a function growing sufficiently slowly that the following integral is well defined (as an improper integral). Then the Mittag-Leffler sum of ''y'' is given by
:\int_0^\infty e^ \mathcal_\alpha y(t^\alpha z) \, dt
When ''α'' = 1 this is the same as Borel summation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Mittag-Leffler summation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.